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out parity doubling. As an example of this procedure we
have displayed a well-known model whose energy-
momentum tensor may be written in terms of currents
and is invariant under the chiral SU(2) XSU(2) group.
The identity of 8(+~&" and 8~ &&" allows one to avoid the
appearance of two independent Poincare groups, and
the ensuing parity doubling of the particle spectrum.
In this regard, Eq. (7) is the crucial relation, and it
would be interesting to see if it is possible to And other
models in which it is satisfied. Finally, we note that

there is no intrinsic difhculty in extending the model
given to SU(3) XSU(3) or more complex groups. The
essential ingredients as, given by Eqs. (14) and (15),
are easily extended to these more general cases.

Pote added in manuscript A. fter this work was
complete we received an Imperial College Report
(unpublished) by K. Barnes and C. Isham which also
notes that nonlinear boson models can be used to con-
struct a theory of currents with q-number Schwinger
terms.
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A general method is presented for evaluating, in a model-independent way, the soft-virtual-photon
radiative corrections to an arbitrary hadronic process. It is shown that all the results concerning infrared
divergences obtained within the theory of quantum electrodynamics of the electron-photon system are,
in fact, exact in strong interactions. The problem of radiative corrections to low-energy theorems is the
primary concern of this investigation. The threshold contributions of intermediate soft-photon states are
nonanalytic in the photon frequency co. %hile the procedure is general enough to permit, in principle, the
calculation of the leading terms (as a ~ 0}of these radiative corrections to all orders in e, in this paper only
the leading e~ radiative corrections are computed explicitly: They are of the order lnao for the bremsstrahlung
(as 6rst noted by Soloviev) and of the order co inca for pion photoproduction. Accordingly, in the presence
of radiative corrections, there are no longer any low-energy theorems for the 0 (co') bremsstrahlung and
O(a) pion photoproduction amplitudes. The e' Compton amplitude O(co2lncg) is computed and shown to be
independent of the target spin.

I. INTRODUCTION

HE primary purpose of this paper is to discuss a
number of low-energy theorems for amplitudes

of Compton scattering, bremsstrahlung, and pion
photoproduction. It is well known that, to the lowest
order in the electric charge (e), low-energy theorems
have been proved for these scattering processes. Here
we examine the validity of these theorems in the
presence of higher-order radiative corrections. In the
low-frequency (s&) limit, the leading terms in the
radiative corrections are shown to be structure-
independent, i.e., there also exist low-energy theorems
for radiative corrections themselves, valid to all orders
in strong interactions.

As we shall see, all the radiative corrections to be
discussed in this paper come from contributions of
soft virtual photons. Our results are obtained by
straightforward applications of the usual (i.e., lowest-
order in e) low-energy theorems for processes involving
virtual photons, and their validity rests exclusively on
the general assumptions of Lorentz covariance and
gauge invariance, as in the case of the usual theorems.

*Based on parts of a Ph. D. thesis to be submitted to the
Rockefeller University.

f Present address: The Institute for Advanced Study, Princeton,
N. J.

In the next section we will discuss the general problem
of soft-photon radiative corrections and, in particular,
their relevance to the question of the validity of low-
energy theorems to higher orders in e. Our model-
independent method for evaluating the leading terms
of such radiative corrections will be outlined and the
principal results stated. In the subsequent sections,
details of the derivations will be given. In Sec. III, we
discuss the problem of infrared-divergent radiative
corrections to an arbitrary process involving charged
hadrons. Radiative corrections to low-energy theorems
will be calculated for bremsstrahlung in Sec. IV A, for
pion photoproduction in Sec. IV 3, and for Compton
scattering in Sec. V.

II. OUTLINE OF THE PROBLEM

A. Low-Energy Theorems and Soft-Photon Problem

Let eqTq be the invariant scattering amplitude of
the process n —+P+y, with a and P being arbitrary
hadron states and y being a photon of momentum k
and polarization e),.' Gauge invariance requires that

k),T),——0.
' The following argument can be generalized in an obvious way

to cases where more than one low-frequency photon is involved.
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Frc. 1. Pole terms for (a} bremsstrahlung from scattering
of a charged particle p with a neutral particle r and (b) Compton
scattering.

Differentiating on both sides, we obtain

(2.2)

The part of the amplitude for which the limit
[BT„/Bkq]q 0 exists (i.e. , the part which is analytic at
k=0) must be of the order k. Accordingly, gauge
invariance implies that

T~= &~+0(k), (2.3)

where Sq is the part of T~ which is singular at k=O.
The separation of Sz from Tz can be made in a unique
and gauge-invariant way, by adding whatever non-
singular terms are necessary to the singular part so
that Sz itself satishes Eq. (2.1).Consequently, to obtain
the low-energy behavior of the amplitude T&, our
principal task vill be to compute the gauge-invariant
singular contributions.

To the lowest order in electromagnetism, the only
nonanalytic (at k=0) term in the amplitude will be
the single-particle pole term, which corresponds to
the photon(s) being radiated from external charged-
particle lines. Two simple examples of such pole terms
are shown in Fig. 1.' These pole terms can be computed
with the on-shell amplitudes of the original process with-
out photon(s), giving the usual low-energy theorems.

On the other hand, in the presence of higher-order
radiative corrections, the task of computing Sq becomes
more complicated, since contributions from inter-
mediate states of particle plus zero-mass photons give
rise to branch cuts extending down to k=O. To obtain
the low-energy behavior of the amplitude Tq, our
compute not only the pole terms but also the threshold
contributions of these intermediate soft-photon states.
It will be shown, as one of our main results, that these
nonanalytic threshold terms can again be calculated,
as in the case of the pole terms, from the on-shell
amplitude for scattering without radiation, i.e., the
entire S), can be calculated in a structure-independent
way. In this paper we will compute explicitly only the
e' radiative correction, but the procedure is general
enough to allow us, in principle, to calculate the higher-
order threshold contributions.

~ All the "graphs" we will draw in this paper have complete
vertices; i.e., strong interactions have been included to all orders,
so that we have various form factors.

It is clear that the validity of the usual low-energy
theorems to higher orders in e will depend on what
orders of photon frequencies these nonanalytic threshold
terms are. For example, the existence of a co incr term
will then limit the original series expansion in powers of
co to no higher than co', and so on. At the end of Sec.
IV A, a more detailed discussion will be given of the
question "What does one mean by 'validity' of the
low-energy theorems to higher orders in e?"

Of course, infrared divergences are associated with
the virtual soft-photon radiative corrections. It is clear
that here two expansions are made of the scattering
amplitudes: one in the electric charge e and another in
the photon frequency co. Soft photons complicate both
these expansions: For the expansion in e we have the
infrared divergences; for the expansion ~ we have the
nonanalytic terms —for example, cu ln~. Thus, the zero-
mass property of the photon leads to infinities in the
coefFicients of both power-series expansions. Both
these types of complications will appear in the discussion
of higher-order radiative corrections to low-energy
theorems.

In the next subsection we will give an outline of the
general procedure for evaluating the radiative correc-
tions due to soft virtual photons in an arbitrary hadronic
process.

1 d4k'

T(2) =— iD„g(k")M„g
2! (2s)4

(2.4)

D„q(k") is the propagator for the virtual photon with
momentum k' and polarization indices X and p, .'

I le' 6p fX

iD„),(k")=
i(k"—ie)

(2.5)

M„), is related to the matrix element of the electro-
magnetic current operator J by

M'„q = i d4x —e '~'*,„t(8 ~ T(J„(x)Jq(0)) ~ a);~+p„q,

(2.6)

where p„q stands for possible "seagull" term which
compensates the noncovariant nature of the T product
and ensures that M„), is gauge-invariant. M„q is the
amplitude for the process a+y' —+P+y', 7' being
virtual photons.

Since we are only interested in the part of d'k'
integration corresponding to the four-vector k'~0, a
number of simplihcations can be made in the actual
calculation. Since these simplifications will be used
throughout this paper, each of them will now be
discussed in some detail.

B. Method of Evaluation

The e' radiative correction amplitude T(2) for the
hadronic process a —+ P can be represented as
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FiG. 2. Double-pole terms in scattering involving
two low-frequency photons.

' The gauge conditions (2.1) and (2.2) remain true when k'&0.' For some relevant comments in this connection see Ref. 4
of A. Pais, Phys. Rev. Letters 19, 544 (1967).

'awhile this statement is clearly true for spin $, it is not so
transparent for higher spins. For example, the spin-dependent
term S(S, p~+~)+(S, y~+p&)S {S being the spin operator) in
(pr~ J~pr) cannot be ruled out simply by rotational mvariance.
However, L. I. Lapidus and Chou Kuang-Chao, Zh. Eksperim.
i Teor. Fiz. 39 1286 (1960) [English transl. : Soviet Phys. —
JETP 12, 898 (1961)g, have shown that such factors are absent in
the low-frequency matrix elements of the current by requiring
that Jrt transform as a Lorentz four-vector. For a systematic
discussion of cases of high spin, see A. Pais, Nuovo Cimento 53,
433 (1968). %e will parametrize the electromagnetic vertices of
spinning particles in such a way that their spin-independent
nature in the k'-+0 limit is clearly displayed, e.g. , for spin $,
we write

(Pr [Jr ( pg) =N(pr) [fr(k")r'(pi+Pr) ~+fr (k")ai„k„'5N(p,).
g Since we have soft photons (real or virtual) attached to

external charged particles only, the oG-shell terms must necessarily
vanish in the zero-frequency limit.

(I) Regardless of whether the photons are on- or
oK-shell, the low-energy theorem (to the lowest order
in e) holds, and it informs us (as discussed in Sec. II A)
that the leading terms in M„r, for k'~0 come from
c1iagrams in which the two virtual-photon lines are
attached to the external charged particles. Figure 2

depicts such double-pole diagrams. For the special
cases (which we will consider in Secs. IV and V) of
soft-photon radiative correction to processes which
themselves have soft photon(s) in their initial and
final states, the relevant M„), is then given by diagrams
where all the soft photons, real and virtual, are emitted
or absorbed from the external charged lines. Figure 3
is such an example.

It is principally due to this simpli6cation that we
are able to compute in a model-independent way the
sof t-photon radiative corrections to an arbitrary
hadronic process.

(2) In this paper we assume that electromagnetic
vertices exist for particles of arbitrary spin. 4 In the
limit of kr, '~0 the leading term for any vertex is
the same:

(Ps I f~ I Pr) = ie(pr+Ps) ~,

with k'= p2 —pI. All the spin-dependent' and o6-shell'
terms will be of higher orders in photon energy. Thus,
if we are only interested in the leading term in soft-
virtual-photon radiative corrections, we can simply
work with spin-zero particles.

FIG. 3. External-line emis-
sion diagram for the process
pg+kg+k' —+ pg+kg+k'.

kl k k

'If
I

Pl

k2
I

Pp

(3) kq' —& 0 implies k"~ 0; at the threshold the
virtual photon p' is really on its mass shell. In the
J'dro' integration only the contribution from the re'

=
I
lr'

I pole survives (to the order we are interested in). '
Accordingly, for the purpose of computing the radiative
correction due to a soft virtual photon, the following
substitution may be formally made:

(2.7)

with ro'=
I
It'I. As we shall see, this replacement

simpli6es considerably the actual computation in
subsequent sections.

C. Principal Results

Using the general procedure outlined above, we shall
demonstrate in Sec. III that the results obtained with
respect to infrared divergence within the theory of
quantum electrodynamics are not modified when strong
interactions are included to all orders. '

In Sec. IV the soft-photon radiative correction will
be evaluated when the hadronic process also involves a
low-frequency photon, rr~P+y. Besides giving the
expected infrared-divergent factors, the soft virtual
photons also bring about nonanalytic terms in the or

expansion: In Sec. IV A, for the bremsstrahlung
(rr ~ P being some physically allowed process) we have
a term proportional to lnor, while the co' term, for which
I.owe has proved the well-known low-energy theorem
to order e, is shown to be structure-dependent in the
presence of radiative corrections. The low-energy
theorem for the e' lnor bremsstrahlung amplitude
obtained here agrees with the results derived by
Soloviev. '0 In Sec. IV B, for pion photoproduction
(rr ~p being the pion-nucleon vertex) we have a term
proportional to or lnor. It is interesting to note that our
result sho~s that the radiative correction to the or

term, for which Fubini et cl,." have proved a PCAC
(partially conserved axial-vector current) low-energy
theorem, is structure-dependent.

In Sec. V our method is extended to include Comp-
ton scattering. The leading threshold contribution
0(AP into) is shown to be completely determined by
the target particle. This result has been previously

~ For an evaluation of similar types of integrals, see, for example,
J. D. Bjorken and S. D. Drell, EelatzzrisIic Quantum 3fechaeics
(McGraw-Hill Book Co. , New York, 1964), p. 173.

Similar results have been proved independently in renormali-
zable theories by S. R. Choudhury ( rivate communication).' F. E. Low, Phys. Rev. 110, 974 1958).' L. D. Soloviev, Nucl. Phys. 64, 657 (1965)."S.Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40,
1171 (1965).
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derived via dispersion relations for the forward diGeren-
tial cross section by Gerasimov and Soloviev, "then for
the amplitude by Roy and Singh, "and, independently,
by the present author. " It is rederived here without
extraneous high-energy assumptions. The simplicity
of the actual computation allows us to see immediately
that the results for the spin-zero case actually hold for
targets of arbitrary spin. "
III. SOFT-PHOTON RADIATIVE CORRECTIONS

TO e-+ g: INFRARED DIVERGENCES

The physical basis of infrared divergences was
elucidated long ago starting with the work of Bloch
and Nordsieck. " They treated a simplihed model in
which a fixed classical current density interacts with a
quantized electromagnetic held. The virtue of this
model is that it can be solved (without recourse to the
usual perturbation method), and thus leads to insight
into the djjIiculties brought about by photons in the
long-wavelength region. The principal conclusion is the
following: %hen a charged particle is scattered, it
always radiates an in6nite number of soft photons
(with finite total energy). The cross section of any
process involving charged particles and a de~»te
number of photons, for which the perturbation expan-
sion in the 6ne-structure constant is not valid, is an
unphysical quantity. What is measured in reality is the
probability for scattering with an energy loss (due to
radiation) of less than AE, which is the energy resolution
of the experimental setup. A perturbation expansion for
this physically observable quantity is, however,
permissible; the infrared divergence in the radiative
correction and the corresponding divergence in the
cross section for photon emissions cancel order by order.

This cancellation of the infrared divergence in the
cross sections has been demonstrated explicitly for
quantum electrodynamics of the electron-photon
system. The proof, as given, for instance, by Jauch
and Rohrlich, '~ depends on some special properties of
quantum electrodynamics. Consequently, we must
inquire whether the cancellation remains true for the
case of hadrons if strong interactions are included to
all orders. Ke will show that this is indeed the case, as
is to be anticipated.

Consider the process a ~P, where n and P are some
arbitrary hadron states involving charged particles.
It is well known that the infrared-divergent part of the
cross section do- for 0.—+ P+y can be factored out and is
proportional to the da. for a ~P. This is just the usual

I~S. S. Gerasimov and L. D. Soloviev, Nucl. Phys. 74, 589
(1965).

'I S. M. Roy and V. Singh, Phys. Rev. Letters 21, 861 (1968)."T.P. Cheng, Phys. Rev. 176, 1674 {1968).
~5 This result is known independently to K. Y. Lin (private

communication).
~ F. Sloch and A. Nordsieck, Phys. Rev. 52, 54 {193'l).

'~ J. M. Jauch and F. Rohrlich, Helv. Phys. Acta 27, 613
(1954); The Theory of Photons and Electrons (Addison-Wesley
Publishing Co., Inc. , Reading, Mass. , 1955), Chap. 16.

PmpP2k
a„i———e' T(0) .

(p2 k') (p2. k')

For Fig. 2(c) we obtain

(3.2)

P2pP1)
~.~ =+e' T(o) (3.3)

(P2 k')(Pi k')
"The particles are allowed to have arbitrary spin, the results

being spin-independent.
IQ Thxs is just a convenient device to avoid involvement in any

discussion of the renormalization problem which would only
obscure the simple kinematical properties being presented here
(see Ref. 20). The contribution of Fig. 2 (a) as given in Eqs. (3.1)
and (3.2) is identical to the result obtained by an appropriate
differentiation of (the integrand of) the electromagnetic self-
energy diagram Z(p). After the virtual-photon integration, it
gives the infrared-divergent factors of the wave-function renormal-
ization constant Z~.

~'In quantum electrodynamics of the electron-photon system,
infrared divergences are usually discussed together with the
renormalization problems of the theory, since some of the re-
normalization constants are themselves infrared-divergent. Thus
graphs where the virtual-photon line is not attached at both ends
to external charged particles (hence noninfrared according to
the criteria as stated above) often become infrared-divergent
after renormalization. Accordingly, the following question has
been raised by Dr. S. R. Choudhury in a private discussion: For
a general scattering process, does renormalization introduce extra
infrared-divergent terms in the physical amplitudes —that is,
above and beyond those coming from graphs where the virtual-
photon line is attached at both ends to external charged particles?
We note that this problem arises from the fact that the renormal-
ization constants are usually dered at points involving particles
on their mass shell. If we had chosen different points (as we have
the freedom to do) where all the charged particles in question are
off-shell, no extra infrared divergences would be produced to begin
with, thus eliminating the issue of the introduction and cancella-
tion of such spurious divergences. In other words, renormalization
can only shuffle infrared divergences from one part of the ampli-
tude to another. No new factors are introduced in the full ampli-
tude. Consequently, as far as soft-photon radiative corrections
are concerned, we can consistently ignore the problem of renormal-
ization and still get the correct results.

co ' bremsstrahlung low-frequency theorem. Our main
interest is therefore the factorization of infrared-
divergent radiative corrections to e —+ P due to virtual
photons.

For definiteness, consider the case where n(p) consists
of one charged particle pi (p&) and one neutral particle
r, (rg). ia According to the general method of evaluating
the soft-photon radiative corrections as outlined in
Sec. II, we first consider the process Pi+ri+y' ~ P2+&2
+y' with the virtual photons y' attached to the external
charged lines pi and p2 as shown in Fig. 2. We treat
the two photons as distinguishable, and the overcount-
ing will be compensated by the appropriate combina-
torial factors. For graphs in Figs. 2(a) and 2(b) we
sha11, for the moment, imagine that the two photons
have diBerent momenta, k~' and k2', so that the con-
tributions from these two graphs will be unambig-
uous '9'0 For ki' —+ 0 and k2' ~ 0, we have from
Fig. 2(a)

P2eP2~ ( 1 1
u„),——+e'

~

— T(0), (3.1)
p2 (k2 ki ) ~p2'k2 p2'kl

where T(0) is the amplitude (to the lowest order in e)
for p~+r~ —+ p2+r2. Setting k'=k~' ——k2', we have
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Substituting pq~ pm in a„q and c„&, results in b„x
and d„),. The ~hole amplitude is then

p2y ply t p2x plx
M x =—e' —— —

~

— T(0) . (3.4)
p2 k' pg k' 'EP2 k' pg k'

We have for the e2 radiative correction"

k

(b)

T(2) = ——,'c'
dk' 1 p, p,

T(o) (3 5)
(2s)' 2(o'(pm k' pg k'

k

(c)
rt f~

(d) f~

k

(e)
r, f2

The interference term with T(0) gives the e' cross sec-

tion, which just cancels the corresponding cross section
for the bremsstrahlung of a soft photon, r~+ pr ~ r2+ pm

+y. It is clear that the above result can easily be
extended to include cases of a —+ p with more compli-
cated charge con6gurations.

For later reference we note that the infrared-divergent
factor in Eq. (3.5) can be computed to be

k

ct ( f) 1'2 fl
Y7

r, (h) r~

FiQ. 4. Soft-photon radiative correction to bremsstrahlung.
There are eight more crossed diagrams corresponding to the
photon k heing emitted from the initial charged line. They are
related to the above diagrams by the substitutions p~~ p~ and

T(2)=&(t) —T(o)
Gl

soft, the low-energy theorem informs us that the leading
contribution comes from those graphs in which all three

3.6
photon lines, real and virtual, are attached to the
external charged particles in the basic process a ~ p.

where t= —(pu —p~)'. For the equal-mass case (pP =p2'),
b takes on a simple form:

e t —2m 2 t —D"'
b(t) =—1+ ln

D1/2, t+D1j2

where D= t' —4tm2 and for t ~ 0 we have

(3.7)

b(t) =——+0(t2).
3' m2

(3.8)

It should be noted that the validity of our result as
stated in Eqs. (3.5) or (3.6) rests on the generality of
our procedure in applying the low-energy theorem to
the amplitude n+y'~P+y' in the integrand. The
results should be true in any local-field theory, and we
note that a minimal e6'ective electromagnetic vertex is
not required here."

A. Bremsstrahlung Low-Energy Theorems

We will again consider, as in Sec. III, the case where
the a (p) state consists of one charged particle pr (p2)
and one neutral particle rq (r2) By the .above argument
it is then sufhcient for our calculation of the soft-virtual-
photon radiative corrections to consider the set of
diagrams in Fig. 4. Ke have included seagull diagrams
so that the total contribution in the soft-photon limit
will be gauge-invariant. 23

It is clear that Figs. 4(a) and 4(b) contribute only
to the infrared-divergent terms:

P21 P&i P&1 P&l
(a+b) ~ = — +

( s-)' (e' (p2 k')' (pg. k')')

Iv. SOFT-PHOTON RADIATIVE
CORRECTIONS TO e ~ Ii + y

We now consider the slightly more complicated
problem of soft-virtual-photon radiative corrections to
the process a ~p+y, the emitted photon also being
soft (kx~ 0). Here we expect to obtain not only the
infrared-divergent terms but also the nonanalytic
threshold factors ( inca) of the intermediate soft-
photon state. Similarly, as in Sec. III, we first consider
the process of n+y'~ P+y+y'. All the photons being

"Ke use Feynman gauge g, ~„'e) ' ——8),„.
22 Z. Z. Aydin and A. 0. Barut LTrieste Report No. IC/68/101

(unpublished}g have stated that the quantum-electrodynamic
results with respect to infrared divergences will no longer hold
when nonminimal Pauli coupling is used. However, these authors
did not consider the self-energy diagrams in their calculation of
the radiative correction to a proton electromagnetic vertex.

where T(0) denotes the zeroth-order-in-c, on-shell
amplitude for the process rq+p~~r2+p2 without
photon emission.

The contribution from Figs. 4(c)—4(h) can be written
in simple form:

e' dk'
(c+d+ . .h)g=-

(2s.)' 2sr' p"+m'

kpg k' p2 k &p2 k pg k'

"Because of the manner with which we parametrize the vertsx
{see Ref. 5}, there are seagull-type diagrams even for spin-$
particles. They represent simply the nonsingular contributioen
{from the continuum) that are added to the singular term to
form a gauge-invariant {low-frequency} amplitude (see discussion
in Sec. II A).
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pl
I
I

FIG. 5. Singular contributions by the state of a particle plus a
soft photon. The vertical dashed line indicates that k' and p'
are on-shell. R stands for an arbitrary number of neutral particles.

where p'= p2+k —k'. The ln~ terms come about
because the propagator (p"+el) ' diverges as k -+ 0
and k'~ 0. Before proceeding with the computation of
these terms, we will 6rst separate out the infrared-
divergent factor coming from Fig. 4(c) which is propor-
tional to (Pl k') '(Pl. k') '. This can be accomplished
easily by noting that

(c'+d+. . h)l

e'T(0) dk' 1 — k' kq p
k.'-p-

2'P, (k —k') p kl p, k)(2lr)'

diagrammatic representation of this statement is given
in Fig. 5. In the Appendix, Eq. (4.4) will be derived

using the noncovariant Low equation, so as to display
the direct relationship of our calculation with Low's
method.

Returning to the calculation at hand, keeping only
the leading terms in the integrand, i e ,. 0. (oP) for Cl„
and O(ie ') for M, . We have from Eq. (4.3)

1 ( 1 1 1
x =I +

P"+m' P .O' LP "+m' 2P;k')P;I k'k—
Dropping terms that contribute neither to the divergent
factor not to the lnco terms, we have

1 k' k)pi pl
kl' —p» i (4 5)

pl k' pl klpl k

(c+d+" h)l

1 dk'-
—e' eT(0)

(2n)' 2co' (p, .k')(p, k') Jp, .k

2e p2ppl p»pg+, +~)„p"+m' p' k p, k

I

X — eT 0 . 43
pl. k pl k'

The first term combined with (a+b)l in Eq. (4.1) gives
the expected infrared-divergent factors, which are pro-
portional to the lowest-order bremsstrahlung amplitude.

In the following discussion we mill concentrate on the
inca factors coming from the second term in Eq. (4.3).
Since these logarithms are brought about by the
integration over the (p"+m') ' pole terms, we are
allowed to set p"+vs'=0 in the numerator, which is
the residue of the pole. Accordingly, the nonanalytic
terms can be written in a general form:

1 dk'
— -(2 "'e.')

(2n.)' 2~e' s

The prime over the amplitude cq indicates that the
infrared-divergent factor has been extracted. The
6rst term vanishes after the dk' integration, since

and

—=ainIp, kI
2(0' pl (k —k') pl. k'

(4.6)

f
dk' 1 k), ' —=C&pll+Cp»j» I peak I, (4.&)
2ie' pl (k —k') pl k'

giving

e'T(0) pi'k
(c'+d+ . .h)), —— Pll P»

(2lr)' pl k

Pl'P2
XI & —& lnI pl. kI. (4.8)

pl k

dk'

2~' pl (k —k')

must be proportional to p2&,
' therefore we have only two

types of integrals to calculate:

dk' 1

Cl„(k,pl, k', p')3f„(k',p', pl)X,(4.4) A and & can be evaluated easily by going 6rst to the
P"+m' rest frame of pl.

where M„ is the on-shell amplitude for the bremsstrah-
lung itself' and Cq„ is the on-shell Compton amplitude.
Both amplitudes are of the lowest order in e. The
variables in parentheses specify the relevant momenta
for these processes.

It should be noted in passing that, in general, M,
represents the amplitude for any soft-photon process
for which the radiative correction is in question. A

t—D"'
A = —4~D "'ln

i+Dl/2

t —D'~'
8=4lr(pl k)D-'I 2 —4p, plD 'I'ln, (4.10)

t+D'I'

where t and D are defined as in Sec. III. It is then
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straightforward to check that

e pl ' ps
A —B = —2b'(&),

(2)r)s Ps k
(4.11)

FIG. 6. Pion photoproduction.

Q

b' being the derivative with respect to the variable I, of
the function b def)ned in Eq. (3.6). Adding the contribu-
tion from the crossed term and noting the relation
ln(p). k) =in(ps k(+O(k'), we obtain from the soft-
photon radiative correction to the bremsstrahlung
amplitude

Ao
))z(3) =e( — )T(0)(b(()

~e3

M(3) =
12Ã Mss

—2' %incr T 0 . 4.12b

This is the result first obtained by Soloviev. " Our
argument (2) in Sec. II 8 makes it clear that Eq.
(4.12) also holds for cases of higher spin. It agrees with
the low energy limit of the exact relativistic calculation
in perturbation theory by Fomin'4 for the process of
bremsstrahlung by an electron scattered in Coulomb
field.

With this concrete expression for the low-energy
behavior of the e' bremsstrahlung amplitude, we can
now give a more detailed discussion of the question
"What does one mean by the 'validity' of the low-energy
theorem to higher orders in electromagnetism?"

The theorem proved by I.ow' states that not only
the leading co ' term but also the next-order co term
in the bremsstrahlung amplitude (Mq) can be computed
from the corresponding scattering amplitude without
photon emission (T). For definiteness let us take the
case of spin-zero scattering:

ps~ pi), )
M), ——e --— ~T

ps k pg kP

-r2.k rg k 8T
+e -- Ps rs),+ P)),—r)),——,(4.13)

P2'k Py k gp

where v= —(p) r)+p'rs). The proof is carried out
only to the lowest order in e: Mz= Mz(1) and T= T(0).
(The number in parentheses denotes the order in e.)
If the theorem were valid to the nth order in n, then
the relation (4.13) would still hold, with M), and T
taken to the corresponding orders: Mq=M), (1)+

24P. I. Fornin, Zh. Eksperim. i Teor. Fiz, 35, 707 (1958)
t English transl. : Soviet Phys. —JEYP 35, 491 (1959)j.

2b (0(p,—p',) &»—I), &.I)+o(&'). (4.&»)

When the velocities of the charged particles are non-
relativistic and p)'= ps'= rN', /= ——(ps —p))'=——4'.
Hence the angular factor b'(t) can be expanded and
Eq. (4.12) is reduced to the following simple form:

+M~(2r)+1) and T= T(0)+ . .+T(2)s). The radiative
corrections to Afar and T naturally include infrared-
divergent factors. This is precisely what we have in
Eq. (4.12):The pole term is multiplied by an infrared-
divergent factor. The corresponding divergent factors
on both sides are identical, as they necessarily must be.
Thus we say that the infrared-divergent radiative
corrections to the low-energy theorems are really of a
trivial kind. They do not change the form of the
low-energy theorems derived in the lowest order. To be
sure, due to the existence of these infrared factors, hE
will have to be introduced in the cross sections. But
this is a general feature of any physical measurement
and is not limited in any way to the low-energy be-
havior of scattering.

We now see that it is the nonanalytic factor ( n)" Inn))

which is crucial to the validity of the higher-order
theorems. It invalidates the original expapsion in co.

A more concrete way of viewing the problem is to
note that as in the case of bremsstrahlung the existence
of threshold terms Incr indicates that the nonthreshold
contributions are of the order co', its precise value being
cutoG-dependent. Accordingly, there is no longer any
low-energy theorem for the co' term in the e' amplitude,
since soft photons introduce structure-dependent
terms of this order.

B. Pion Photoyroduction Low-Energy Theorems

For u~P+y, with a —+P being a pion-nucleon
vertex, we have the simple but physically interesting
case of pion photoproduction. Figure 6 shows the
kinematics. The pion has isospin index a and mass p.

We are interested in the limit of k —+ 0 and q
—+ 0,

i.e., the low-energy limit in the no-recoil approximation.
To the lowest order in e, Kroll and Ruderman' have
shown that the leading co' term in the amplitude is
completely determined by the electric charge and the
pion-nucleon coupling constant g. In the laboratory
system, the theorem reads

eg
M~=i a)tr', rsj+O(co)+0(js).

4m
(4.14)

We can follow the procedure used in Sec. IV A to
obtain the radiative corrections. To order e3 the pole
term is still the same as in Eq. (4.14), with g being the
e radiative correction to the pion-nucleon coupling
constant, including the expected infrared-divergent
factors. As for the nonanalytic threshold terms, we can
simply make use of the general expression (4.4), with
M), being the lowest-order pion photoproduction
amplitude. Since the initial and final momenta of the

s' N. M. Kroll and M. A. Rndern)an, Phys. Rev. 93, 233 (1954).
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Fzo. 7. Soft-photon radiative correction to Compton scattering.
There are eleven more crossed diagrams corresponding to an
exchange of kI and k~ in diagrams (a)-(k). The contributions of
the crossed diagrams can be obtained by the substitution kI~ ~k».

V. SOFT-PHOTON RADIATIVE CORRECTIONS TO
a+y ~ )+y: COMPTON-SCATTERING

LOW-ENERGY THEOREMS

Compton scattering is the simplest two-photon
process a+y ~P+y: n and P are merely single charged-
particle states.

s'Transverse gauge: g. e e,'=Se ks't'&'/[k'[s (i, j=—1, 2, 3).

nucleon are constrained in this scattering, the calcula-
tion is considerably simplihed when performed in the
laboratory system and with the transverse photon
gauge. " Evaluating the integrand by the Thomson
theorem for the Compton amplitude and by Eq. (4.14),
we have

—j. e'g o)'der'
e M'(3) =- — i dQ'g(a e')(e' e).

(27r) ' 2m' s 2 et

-', Lr', r'] (1+r') —,'(1+r')(r, r']
X +, (4.15)

ct) —Go o)'+co

which yields the threshold contribution

eg 2(x Go

i o e ——1n(or'(1 —bs.)+0(&v)+0(p) . (4.16)
2m 3' m

The ~ incr term comes in two isospin channels. The term
proportional to 7 is one of the amplitudes for which
Fubini et al. have given a PCAC low-energy theorem
to order ~. Our result shows that this term is structure-
dependent when radiative corrections are included,
for the same reason as was discussed in Sec. IV A for the
c0' term in bremsstrahlung amplitudes. The independent
isospin amplitude 7 83, appears because the intermediate
photon has an isovector part.

2' ct0 de)——(1—cosO~) C~s~

3' m2 M

(5.2)

where C"' is the lowest-order Compton amplitude.
%e will now concentrate on the evaluation, in Figs.

7(c)—7(k), of the singular threshold contributions
from intermediate soft-photon states. For this, we can

~7%. Thirring, Phil. Mag. 41, 1193 (1950); F. K. Low, Phys.
Rev. 96, 1428 (1954); M. Gell-Mann and M. L. Goldberger,
ibid. 96, 1433 (1954). Recently, these theorems have been further
extended, to scattering involving "charged" photons t M. A. B.
Beg, Phys. Rev. Letters 17, 333 (1966)g, to parts of the 0(co')
amplitude Pf. Singh, ibid. 19, 730 (1967)j, and to cases of higher-
spin targets (A. Pais, Refs. 4 and 5).

It has long been known that to the lowest order in e

the leading co' and co Compton amplitudes are completely
determined by the charge and magnetic moment of the
target particle. '7 These Compton-scattering low-energy
theorems are of particular importance. Besides giving
us an empirical de6nition of the electromagnetic
couplings, these theorems, in conjunction with certain
high-energy assumptions, may be converted into a
group of interesting sum rules. In this section the
low-energy behavior of the e4 Compton amplitude is
investigated.

We begin the calculation by considering the amplitude
for the process

Pl+ kl(elx)+k (4 ) ~ Ps+As(esp)+k (ep )

(which also serves to define the kinematics of the
problem). The target p is allowed to have arbitrary
spin. As we shall see, the 0(e'aP Ines) Compton low-

energy theorem to be derived in this section is spin-
independent. When all photons have small energy, the
leading terms are associated with diagrams which can
be obtained by making all possible permutations of the
four photon lines in Fig. 3. We then tie the k' lines
together, and integrate (with the integration range
0&

~

k'~ (6, b ~ 0) to obtain the soft-virtual-photon
radiative correction to the low-energy Compton-
scattering amplitude Lsee Fig. 7; again we have included
the seagull graphs" in Figs. 7(g)—7(n)].

Just as for pion photoproduction, the actual computa-
tion is greatly simplified when it is performed in a
special Lorentz frame (p~=0) with a particular gauge
(the Coulomb gauge).

In the laboratory system, the initial and final photon
frequencies are related by

oo~ —a»= (co,eos/m) (1—cosO), (5.1)

0& being the laboratory scattering angle. Whenever the
diGerence co&—ro2, which is quadratic in photon fre-
quency, can be neglected, we will simply refer to both
coy and co2 a,S co.

It is clear that Figs. 7(l)—7(n) and 7(a)—7(c), with
their cross graphs, give rise to the infrared divergence.
By Eqs. (3.6) and (3.8) Lthe momentum transfer
t = —2co~cus(1 —cosO) vanishes in the soft-photon
limit),
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make direct use of Eq. (4.4):

61)t62y

—,(2 "",')
(2a.)' 2co' "

C„„"(k,p; k', p')C, „"'(k',p', p„k )
(5.3)

The spin-dependent terms will give a term of the order
c01 lnor1. VVhen the contribution from the crossed
graphs is added, the leading co1ln~1 term and the
spin-dependent terms are both canceled by the cross
terms. By Eqs. (5.2), (5.7), (5.8), and (5.1), C&'& is
given as

p"+m'

where p'= p1+k1—O'. The numerator is the product of
two physical e' Compton amplitudes. To the order we
are interested in, we have

e,'C, ),&"eg), = 2e'ag. a'+coSfag, a')+0(co') (5.4)

g2 Q) 2 2(ag k2)(aa kg)
C&4& = — —(3+cosO) (ai aa)—

37r2 m tg'

(~b' do)'
Xln~+~ —

~
(1—cos0) (ai. a~) . (5.9)

t,m) co J

e2 C„"„.'e, '=2e'La2 a'+(kg a')(kg a2)/ma)'

(kl k ) a2(kl k2) a /~2]
+(aS(a2,a']+0(aP), (5.5)

where coS(a,a'] stands for possible spin-dependent
terms. 5 by itself is of order co and is odd under crossing.
As we shall see, none of these spin-dependent factors
will contribute to the anal results with respect to the
radiative correction 0 (cu' in&a).

Thus, in the laboratory system, with transverse
gauge a' Eq. (5.3) reads

4e4 dk'
C(4)'—

(2a)' 2(s' " 2mL(og —a&' —(a)~a)' —kg. k')/m]

X((ag a')(a). a') —(ai a')(ki —k') a)(ki —k,) a'/ee2

+(ag a')(kg a')(kg a2)/mau'+co(ag a')St ag)a'7

+ St.„.](., ")+0( )) ~. (5.6)

The only term we have to be careful with is the one
proportional to (a~ a')(a2 a'); here we must keep the
recoil terms proportional to k1 k' in the denominator.
Concentrating on the threshold contribution of this
term, we have

e4 1 ur'dCO'dQ'

(27r)' m " 81'8 82' 8
u1 —CO'

e' (a2 kg)(ag k2)
111&1.

3%,2
(5 g)

e4 1 SX 2——(, ,),1,—2 —10,) . (S.t)
(2a)'m 3 m

For the second and the third terms in Eq. (5.6) the
recoil factors can be dropped; after a simple computa-
tion, the result is

The cross product of the e4 amplitude and the
Thomson amplitude 2e a1 a2 gives rise to the leading
e' di6'erential cross section

2Q C
de (6) =dQ—— — (cos'O~ —3 cos'O~ —3 cos0~ —3)3' m m

AD
Xlnco —(1—cosO) (1+cos'O~) +0(a&') . (5.10)

CO

This result agrees with the low-energy limits of the
exact relativistic results calculated in perturbation
theory by Corinaldesi and Jost for spin-zero targets,
and by Brown and Feynman for electron targets. '8

With our approach the spin-independent nature of
the results in Eqs. (5.9) and (5.10) are understood"
and, furthermore, they are shown to be exact in strong
interactions.

Remarks. One may ask why the e2 radiative correction
invalidates the oP bremsstrahlung low-energy theorem,
but not the or Compton theorem. The reason lies
essentially in the special crossing properties of the
Compton scattering. In bremsstrahlung, the momenta
of the initial and Gnal charged particles are not corre-
lated in the soft-photon limit; on the other hand, in
Compton scattering we have the kinematic relation
kz (P&

—P2) = k& k2. Accordingly, the leading au Inca
term

1 see Eq. (5.'I)] is canceled when the corresponding
contribution from the crossed graphs is added. '0 It can
be understood in a similar way that the co inca amplitude
vanishes for x photoproduction.

'8 F. Corinaldesi and R. Jost, Helv. Phys. Acta 21, 183 (1948);
L, M. Brown and R. P. Feynman, Phys. Rev. SS, 231 (1952);
see also W. Heitler and S. T. Ma, Phil. Mag. 11, 651 (1949).

'9That in the perturbation calculation the result of the e6
Compton cross section for spin $ should be identical in the low-
frequency limit to that for a spin-0 target was pointed out as a
puzzle by W. Heitler, The Qgaetens Theory of Eadiutioe (Oxford
University Press, New York, 1954), 3rd ed. , p. 332.

~ This apparently the source of an error in the calculation of the
low-energy e~ Compton total cross section by Soloviev (Ref. 7,
p. 667). Evidently this author kept only terms corresponding to
the leading eo lou factor of Eq. {5.7) (by analogy with the brems-
strahlung case) and arrived at the value ~(e/~) (a/m)~(in~)oy
instead of the correct value —4{a/~) (a/m)'{inca)o p, where
pro= (Sm/3) (e/m}'.
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By translational invariance and appropriate change
of space-time variables, we have

d4xd4r e i(n pa —k—)@+i(a—og—rz)z8( y )8(xo)

APPENDIX

Equation (4.4) offers us a general procedure for
evaluating the nonanalytic threshold factors. Here we
will derive it via the noncovariant Low equation. We
shall again consider the radiative corrections to the
process p)+r)~po+ro+k. The vectorial amplitude
Mq is related to the matrix element of the current
operators by

Mg(ro, Po,k; r),P)) = —(2)r)'(4E)Eo) "' d'xd'y

x&pol J,(o) In&(nl j(x)j(0) I pi&

1
= P(27r)'8(n —po —k) f&pol J.(o)l n)

'B o)+Eg—E„

X d'x e'&" "' ""*8(xo)(nlj(x)j(0) I p)). (A4)

The fourth term in Eq. (A2) may be written in a similar

way, and when it is combined with Eq. (A4) the result is

—(2)r) (4E)Eo)"o P 8(n —po —k)

Er (Eo) is the energy variable of pr (p,). J), is the
electromagnetic current operator and the j's are the
source currents for the initial and final neutral particles.
There may be, in addition, equal-time commutator
factors, which precisely compensate the noncovariant
nature of the T product. Since we are only interested
in the singular threshold contributions of soft-photon
intermediate states, we can ignore these factors, since
they are not singular in the limit co ~ 0.

First, we write out the time-ordered product

T(j(x)J~(0)j(y))
=8(»)8(—ro) j(x)J~(0)j(r)+8(ro)8(—*.)j(r)

J&(0)j(x)+8(—xo)8(xo—yo) J&(0)j(x)j(y)
+8(—yo)8(y —*)J (0)j(y)j( )
+8(*o—yo)8(yo) j(*)j(y)J~(0)

+8(ro—*o)8( o)j(y)j(*)J (o) (A2)

It is not dificult to check that only the last four terms
contain amplitudes having energy denominators that
may vanish in the zero-frequency limit. Consider the
contribution coming from the third term in Eq. (A2):

d'xd'y e '"'*+'"'o8(—xo)8(xo —yo)

x&pol J~(0) ln)&nl j(*)j(y) I p)& («)
where In) denotes a general on-mass-shell intermediate
state with total three-momentum n and energy E„.

where

&n, rolMI p), r))

(po I J~In)&n, ro IM I p), r»
X (A5)

E„—E2—co

i d—ox e '"'*I 8(—xo)(nl j(0)j(x) I p)&

+8(xo)&nl j(x)j(0) I
p)&e'"" ' '"7

For singular terms, the o6-shell sects in the numera-
tor may be neglected. Equation (4.4) then corre-
sponds to the contribution by the state of a particle
plus a soft photon, a= p'+k' and E„=E'+au', with
E'= (p'o+)ooo)'~o, to th—e sum in Eq. (A5). We note the
following correspondences:

dp'dk' P,

2E'(E'+oo' Eo o)) ~ p"+—ri'—

(p, I J,
I
p', k'(e')&I (2~)o8E,E'~']'&' ~ o„'C,„(k,p„k',p'),

(ro, p', k'(o')
I
M

I p) r)) I
(2)r)'8E)E'o)']"'

~ o„'M„(k',P'; p,).
The contributions corresponding to the fifth and sixth
terms in Eq. (A2) are just the crossed graphs.


